Yannie Lam ’23 conducted pharmacology research as part of the Amgen Scholars Program, administered through the Office of Biomedical Graduate Education in the School of Medicine at Duke University. In addition to working in a lab, she attended weekly lectures given by researchers, spoke with current PhD students, and presented her research to other students and faculty at the Amgen Scholars North America Symposium at the University of California, Los Angeles. “The program made me want to pursue a PhD. I’d never done biochemical research before, so this was a really good lab environment where I got to try something new. I realized that I’m really interested in translational research where you figure out how to solve problems related to human disease.”
Angus Kingon, professor of entrepreneurship and engineering, and team member Ou Chen, associate professor of chemistry, will build upon research by Emeritus Professor Ted Morse that led to the development and patenting of a proof-of-concept novel x-ray scintillation detector, which has demonstrated both vastly improved resolution and a means of reducing the radiation dose rate. Their research will have implications for medical x-ray imaging, such as mammography, by lowering the x-ray dose and increasing the ability to detect abnormal features at an early stage.
The Entrepreneur Connect Initiative, a project of Brown Technology Innovations (BTI), pairs seasoned entrepreneurs with faculty inventors to work on specific university intellectual properties with the goal of creating fundable start-ups. The entrepreneurs conduct customer discovery and bring a market perspective to the academic research, and the faculty inventors observe how the entrepreneurs approach their findings.
Once the entrepreneur and inventor have brought a project to maturity, the Entrepreneur Connect Initiative markets the opportunity to interested investors, drawing on angel investors and venture capitalists from both groups’ networks. In cases in which BBII has provided financial and project management support for a research project, the BTI team offers guidance on how to achieve both scientific and business goals.
The start-up XM Therapeutics is a good example of the initiative’s successful matchmaking. Members of the Entrepreneur Connect Initiative introduced entrepreneur Frank Ahmann to Jeffrey Morgan, a professor of pathology and laboratory medicine at Brown who had developed a technology for making extracellular matrix particles for use in treating damaged tissue in various organs. Together they formed the Rhode Island-based XM Therapeutics; Ahmann became president and CEO.
The rapid spread of antibiotic-resistant bacteria is causing serious global public health and environmental issues. Beta‐lactamases, common enzymes released by a variety of harmful bacteria, destroy antibiotics and are a major cause of drug resistance. Anita Shukla, an associate professor in Brown’s School of Engineering, and her graduate students developed a responsive bacteria-triggered drug-delivery system that could be used to make wound dressings and deliver medication on demand. The system consists of antibiotic-loaded hydrogels that respond to the presence of beta-lactamases by degrading to release encapsulated therapeutic nanoparticles. Such smart hydrogels could be used in diagnostics to reduce the amount of drug needed for treatment, in turn limiting side effects and the development of antibiotic resistance and increasing the lifetime of newly introduced antibiotics. The new material was described in a 2022 issue of the journal ACS Applied Materials & Interfaces.
JAMES B. GARVIN ’78, SCM’81, PHD’84, P’17 is the NASA Goddard chief scientist and principal investigator of the DAVINCI mission to Venus scheduled to launch in June 2029.
“Brown gave me the confidence to explore across academic boundaries— from paleontology and mathematical analysis of computer algorithms to art history and semiotics. The Brown experiences I had from freshman to PhD candidate helped me shape a career of space exploration. Thanks to Brown, my experiment flew in the Space Shuttle (Endeavour), and I was able to experience the joy of the first laser light hitting Mars as well as the Hubble Space Telescope searching the Moon for resources. These are all the stuff of dreams, yet Brown (and fellow Brown students and faculty) helped me pursue such ideas with a hopeful confidence and tenacity to see them fly.
My now 38-year career at NASA was more than catalyzed by my Brown education, and I will forever be grateful for all I learned. And I even got to appear on David Letterman!”
John Lin ’23 completed a research fellowship at the Centers for Disease Control and Prevention’s National Center for Health Statistics, where he conducted epidemiologic research—analyzing national data on food insecurity and adult allergies as well as leading a preliminary analysis of the new National Health Interview Survey for teenagers—to inform CDC policies. “My fellowship was such an important learning experience because I got to see a more public role for research. In the future, I hope to continue working with the government and academic institutions like Brown.” Lin has continued his research with long-time mentor Paul Greenberg, MD, Brown professor of surgery, at the Providence VA Medical Center on medical education, health policy, and ophthalmology.
Vikas Srivastava, assistant professor of engineering, and team member Albert Telfeian, MD, professor of neurosurgery, will develop a novel implantable lead for a spinal cord electrical stimulation device to manage chronic neuropathic pain. The lead will be made of nitinol, a material capable of shape memory that can be inserted with a needle. Once placed in the epidural space, it will expand to the correct shape. The advantage would be to achieve better contacts than can be achieved with a cylindrical lead while avoiding the surgery required for a larger paddle lead.
In 2020, the team of Barry Lester, a professor of psychiatry, human behavior, and pediatrics, and Stephen Sheinkopf, executive director of the Thompson Center for Autism and Neurodevelopmental Disorders at the University of Missouri and an adjunct associate professor of psychiatry, human behavior, and pediatrics, received a BBII award to develop diagnostic tools based on acoustic signatures from infants’ cries that are not discernible to the human ear. Recently, a new start-up, PedialyDx, was formed to further develop and commercialize this technology. The first product will be a handheld device that uses a cloud-based algorithm to determine whether the cries of an infant with prenatal opioid exposure meet the criteria for neonatal opioid withdrawal syndrome. The company is also exploring use of the device in autism research.
The pursuit of more stable and powerful lithium-ion batteries hinges in part on the development of improved electrolytes. Current lithium-ion batteries contain electrolytes made from lithium salt dissolved in a liquid organic solvent. Liquid electrolytes can short circuit and are made with chemicals that are toxic and flammable. Solid electrolytes are made of ceramic, and while excellent at conducting ions, they are thick, rigid, and brittle.
Now there’s a better option—a thin and flexible material derived from trees for use in solid-state batteries. The new material was developed by a team of researchers co-led by the laboratory of Yue Qi, a professor in Brown’s School of Engineering, and a materials science laboratory at the University of Maryland. In a paper published in Nature in October 2021, the team describes a solid ion conductor that combines copper with cellulose nanofibrils— polymer tubes derived from wood. The paper-thin material, which has an ion conductivity of 10 to 100 times that of other polymer ion conductors, could be used as either a solid battery electrolyte or as an ion-conducting binder for the cathode of a solid-state battery. Eventually, the new material could be a step toward bringing solid-state battery technology to mass production.
Strange metals, discovered around 30 years ago, are materials related to high-temperature superconductors and share fundamental quantum attributes with black holes. High-temperature superconductors conduct electricity with zero resistance at temperatures far above normal superconductors. The two fundamental classes of subatomic particles are fermions and bosons, which usually behave very differently. However, a research team co-led by Brown physics professor James Valles has found strange metal behavior in a material in which electrical charge is carried not by electrons, which are fermions, but by more wavelike entities called Cooper pairs. Although they consist of two electrons, Cooper pairs are bosons. Using a material called yttrium barium copper oxide, Valles and his team discovered strange metal behavior in a Cooper-pair metallic state—the first time strange metal behavior had been seen in a bosonic system. The findings, reported in Nature in January 2022, could help scientists understand strange metal behavior, such as high-temperature superconductivity, and potentially provide fundamental insights into the quantum world.
MARCIA CHATELAIN, MA’03, PHD’08 is a professor of history and African American studies at George- town University, a scholar of African American life and culture, a speaker about pervasive social issues and activist movements, and an acclaimed author. Her book Franchise: The Golden Arches in Black America received the Pulitzer Prize for history in 2021. At Brown, she received her master’s and doctoral degrees in American Civilization.
“My time at Brown University in the PhD program in American Civilization (now American Studies) revealed to me that disciplinary boundaries were made to be challenged and some- times broken. Having received training and mentorship from historians, sociologists, and literary critics, and having access to lectures by cognitive scientists, and having been able to build friendships with emerging physicians and engineers, Brown taught me that research is always collaborative. My explorations into the various dynamics of African American history are informed by an array of thinkers, and I am ever grateful to Brown for giving me the skills and confidence to pursue my curiosities and to seek different ways of looking at the world.”
GUIDO IMBENS MA’89, PHD’91, LHD’22 HON. is an economics professor at Stanford University. He was awarded Brown’s Horace Mann Medal in 2017 for his contributions to the economics field, shared the 2021 Nobel Prize in Economic Sciences, and received an honorary degree from Brown in 2022.
“Coming to Brown University opened up a whole new world for me. It was the first time I came to the United States, and the friendliness of the [economics] department and the University community made me feel very welcome. It was not just the rigor of the academic program that prepared me well for my subsequent work, it was also the humanity of the department. I vividly remember getting invited by one of the profes- sors for a family Thanksgiving dinner. As a faculty, we now often invite graduate students to our house to make them feel welcome and seen.”
Sultan Daniels ’23 participated in a WAVE Fellowship at the California Institute of Technology, where he worked with a postdoctoral researcher to conduct information theory research in the electrical engineering department. His project involved developing the proof for a scheme that achieves the fastest theoretical rate at which data could be reliably transmitted by a Gaussian network channel. “The biggest thing that this research project gave me was the chance to put faces to the names in the field. I enjoyed speaking with the other students interested in information theory to brainstorm together or hear about their aspirations. I also enjoyed talking with the professor and the postdoc, as they were always able to point me to interesting papers or other insights,” Sultan said. He is applying to PhD programs with the goal of continuing to pursue research in information theory.